

215 w. 12th street, suite 202

vancouver, washington

98660

Structural Calculations for

Residential/Commercial Aluminum Cable Guardrail System

> Prepared for Stainless Cable Solutions 15806 SE 114th Ave Clackamas, OR. 97015

> > April 27, 2018 17067.00

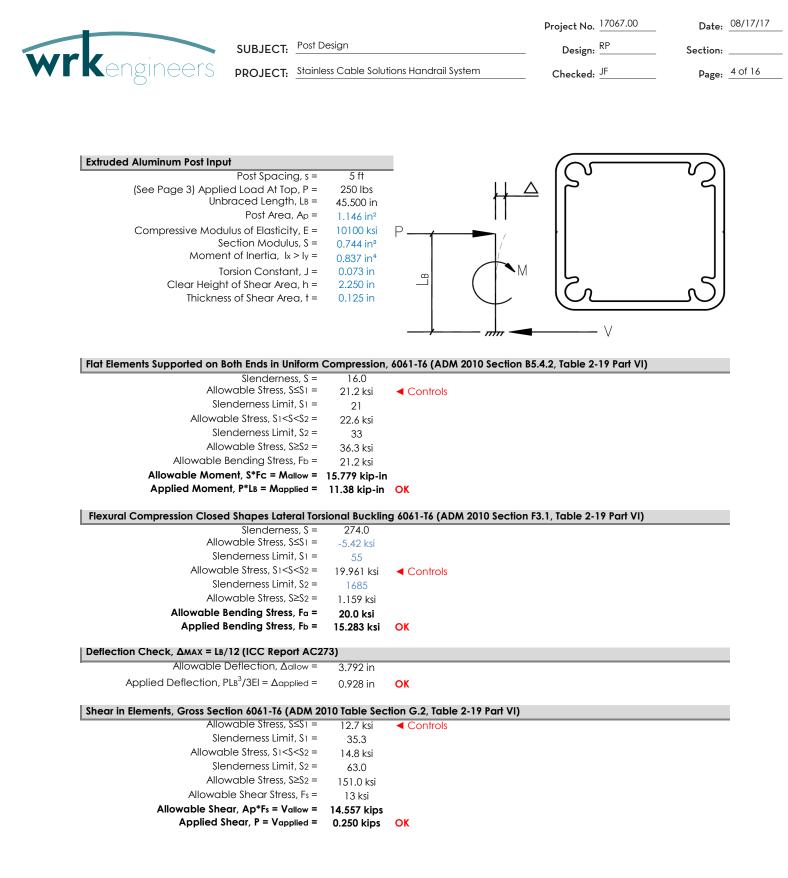
www.wrkengrs.com

Scope of Work

				Project No. 17087.00	Date:
		SUBJECT:	Design Criteria	Design: ^{RP}	Section:
WL	engineers	PROJECT:	Design Criteria Stainless Cable Solutions Handrail System	Checked: JF	Page: 20

08/17/17 17047.00

of 16 Page:


Development and design for an aluminum cable r	ailing system including:	
Termination post, intermediate post, top rail, rail co	onnecting blocks, cables, end cap, flat infill, bo	ase plate,
stair facia, stair intermeadiate cap, and attachme	ents.	
General		
The enclosed calculations were intended to be to	designed and submitted in conformance with	n the following:
Professional Engineer Seals		
State of Oregon		
Building Codes (Meets or Exceeds Requirements)		
2014 Oregon Structural Specialty Code and C	Dregon Residential Specialty Codes	
Additional Design References		
2010 Aluminum Design Manual		
2011 Building Code Requirements for Structure	al Concrete (ACI318-11)	
AISC Steel Construction Manual, 14th Edition		
2012 National Design Specification for Wood	Construction	
ICC Report AC273: Acceptance Criteria for H		
Materials		
6061-T6, T6510, T6511 Extrusions	Tensile Ultimate Strength, Ftu =	38 ksi
	Tensile Yield Strength, Fty =	35 ksi
	Compressive Yield Strength, $F_{cy} =$	35 ksi
	Shear Ultimate Strength, Fsu =	24 ksi
A554 Stainless Steel Grade 304/304L	Yield Stress, $F_y =$	30 ksi
	_	

Type 316 Stainless Steel Wire Rope

Yield Stress, $F_y =$ 30 ksi Tensile Stress, $F_{U} =$ 90 ksi 1x19 Strand Core 1/8" dia. with breaking strength = 1,869-lbs 7x7 Strand Core 1/8" dia. with breaking strength = 1,566-lbs

			Project No.	17067.00	Date:	08/17/17
	SUBJECT:	Design Criteria	Design:	RP	Section:	
Kengineers	PROJECT:	Stainless Cable Solutions Handrail System	Checked:	JF	Page:	3 of 16

Guardrail Loading Conditions	
Uniform Load	
Per 2012 IBC §1607.8.1, the uniform load shall be applied to the	p = 50 plf
handrail in any direction. The railing system covered in this package	
covers all commercial and residential properties.	
Concentrated Load	
Per IBC §1607.8.1.1, the concentrated load shall be applied to	P = 200 lbs
the handrail in any direction	
Per IBC §1607.8.1.2, components including intermediate rails, balusters, and cables shall be designed for a concentrated load	P = 50 lbs
applied normal and horizontally over an area of 1ft ² .	
Per IBC §1013.2 and IRC §312.3 opening limitations shall not allow	
the passage of a sphere 4" in diameter through.	
Part Numbers and Descriptions	
IP100 - SCRS Extruded Aluminum Intermediate Posts	Page 4, 5
TR100 - SCRS Extruded Aluminum Top Rail	Page 6
FI200 - SCRS Extruded Aluminum Flat Infill	
EC100 - SCRS Top Rail End Cap	
BP100 - SCRS Base Plate	Page 7, 8
SR200 - SCRS Extruded Aluminum Stair Rail	Page 9,10
RCB100 - SCRS Stair Grab Rail Connecting Block	
Stainless Steel Wire Rope	Page 11
TP100 - SCRS Extruded Aluminum Termination Posts	Page 12
ISPA200 - SCRS Stair Post Cap Assembly	Page 13
SCRS Extruded Aluminum Facia Mount Posts	Page 14, 15, 16
Aluminum Cable Guardrail System Summary	
Total Post/Handrail Height Including Base Plate	42 in
Maximum Termination Post Spacing	5 ft
Maximum Stair Rail Post Spacing	5 ft
Cable Prestressing	255 lbs
Cable Spacing (On-Center)	3.125 in

Project No. 17067.00

Design: RP

Checked: JF

3" Diax4"Deep Hole with 4 ½" Min Edge Distance (No Rebar) or 1 ¼" Min Edge Distance when #3 or Larger Slab Edge Rebar Present

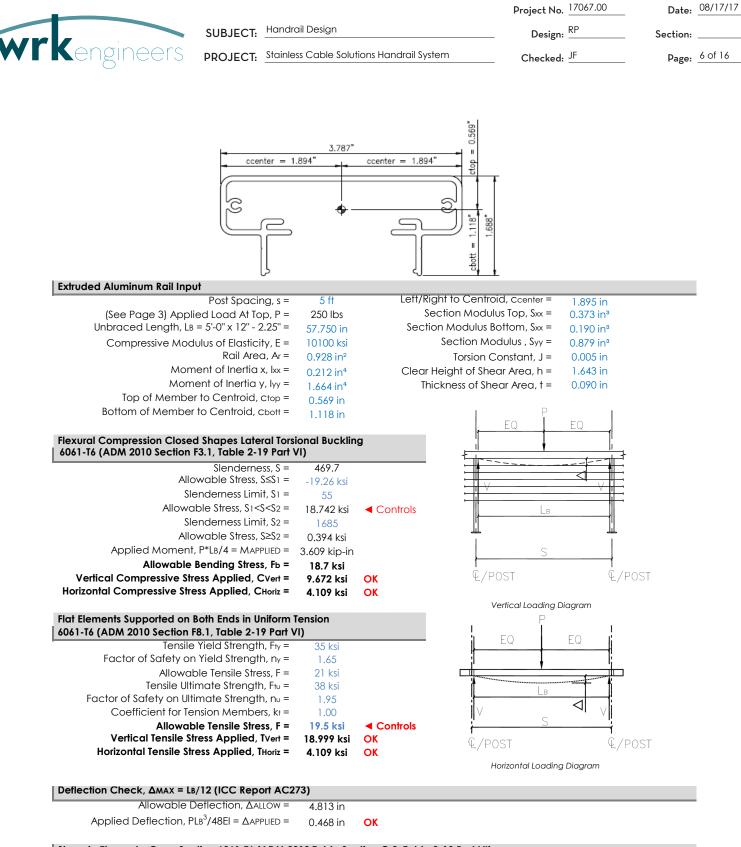
Date: 08/17/17

Section:

Page: 5 of 16

Core Mounted Posts Bearing Check Existing Concrete Strength, t'c = 2500 psi Vapplied = 0.250 kips (See Page 4) Mapplied from post = 11.375 kip-in (See Page 4) dterm Mapplied from shear = 0.750 kip-in Mtotal = 12.125 kip-in Depth of Concrete Blockout, dblockout = 3.000 in Distance Bottom of Blockout to Applied Pu, dcompb = 2.000 in Distance from Applied Pu to Top of Concrete, dcompt = 1.000 in Width of Post, dterm = 2.250 in Loaded Area, A1 = 2.250 in² Area of the Lower Base of Largest Fulcrum, A2 = 6.500 in² Compression Load at Blockout, Pu = 6.063 kips Strength Reduction Factor, Ø =0.65 (Per ACI 318-11 §9.3.2.4) Concrete Bearing Strength, fb = 5282 psi (Per ACI 318-11 §10.14.1) Maximum Applied Compression Load, fbmax = 2694 psi OK < 5282 psi Core Mounted Posts Edge Distance Check stance from Center of Post to Edge of Concrete, ca1 = 6.750 in Distance from Post Face to Edge of Concrete, cpost = 4.500 in Thickness of Concrete, ha1 = 4.000 in Projected Concrete Failure Area, Avco = 205.031 in² (Per ACI 318-11 §D.6.2.1 D-32) Projected Concrete Failure Area, Avc = 90.000 in² (Per ACI 318-11 §D.6.2.1 D-32) Shear Strength Modification Factor, ψed, v = 1.00 (Per ACI 318-11 §D.6.2.6) Cracked Concrete Modification Factor, $\psi_{C,V}$ = 1.00 (Per ACI 318-11 §D.6.2.7) Cracked Concrete Modification Factor, \u03c6h, v = 1.59 (Per ACI 318-11 §D.6.2.8) Lightweight Concrete Factor, $\lambda =$ 1.00 (Per ACI 318-11 §8.6.1) Basic Concrete Breakout Strength, Vb = 9.752 kips (Per ACI 318-11 §D.6.2.2) Nominal Concrete Breakout Strength, Vcb = 6.811 kips (Per ACI 318-11 §D.6.2.1 D-31) Max Nominal Concrete Breakout Strength, Vmax = 6.811 kips OK < 6.0625 kips Use 4,000psi Non-Shrink Grout in Min 3"SQx4"Deep Blockout or

SUBJECT: Core Mounted Post Design


PROJECT: Stainless Cable Solutions Handrail System

Check Top Connection

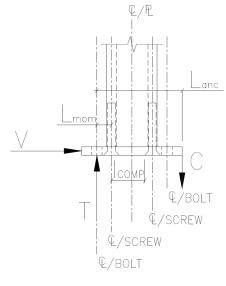
Kengineers

Note: Lateral loads on top rail bears directly on post side. Only uplift loads affecting attachment are considered.

Diameter of Screw, dscrew =	0.194 in	
Thickness of Post, tpost =	0.125 in	
Area of Engaged Post in Shear, Avpost =	0.024 in ²	
Number of Screws in Shear =	2	
Factor of Safety on Screw Connections, ns =	3.00	
Tensile Ultimate Strength of Member Not in Contact with Screw Head, Ftu2 =	38 ksi	
Shear Strength of Screw, Vscrew =	0.614 kips	OK > 0.250 kips

Shear in Elements, Gross Section 6061-T6 (ADM 2010 Table Section G.2, Table 2-19 Part VI)

Allowable Shear, Ap*Fs = VALLOW = Applied Shear, P = VAPPLIED =	11.780 kips 0.250 kips	ОК
Allowable Shear Stress, Fs =	189.1 ksi	
Allowable Stress, S≥S2 =	189.080 ksi	
Slenderness Limit, S2 =	63 in ³	
Allowable Stress, S1 <s<s2 =<="" td=""><td>14.970 ksi</td><td></td></s<s2>	14.970 ksi	
Slenderness Limit, S1 =	35.3 in ³	
Allowable Stress, S≤S1 =	12.7 ksi	 Controls
Slenderness, S =	14.3	



Factor of Safety on Screw Connections, n₅ Ω Pull-Out Strength, Pnot/n₅ Pull-Over Strength, Pnov/n₅	3.00 2.00 4.871 kips OK > 2.625 kips 3.050 kips OK > 2.625 kips	
Tensile Strength of Screw, Ft Tensile Stress Area of Screw, At Nominal Tensile Strength of a Screw, Pn t	90 ksi 0.072 in² 6.480 kips	
Nominal Pull-Over Strength, Pnov	9.150 kips (Eq. J5.10)	
Nominal Screw Head Diameter Abs Min, D tı/D	0.568 in 0.66 <1.1	
Thickness of Member in Contact with Screw Head, tı Tensile Yield Strength of Member in Contact with Screw Head, Fty1	0.375 in () 35 ksi	2/screw
	(Eq. J.5-3)	
nsile Ultimate Strength of Member Not in Contact with Screw Head, Ftu2 Nominal Pull-Out Strength, Pnot	38 ksi 14.613 kips	
Depth of Full Thread Engagement into t ₂ , tcmin	1.000 in	arm .
Thread Stripping Area of Internal Thread Per Inch, Asn	0.663 in ²	
Tension Applied, Papplied	2.625 kips	
Number of Screws in Tension Resisting Moment Arm, Center of Screw to Compression Face, Iarm	2 .000 in	
	(Page 4)	
$M_{APPIIFD} = Load \times Length$	10.500 kip-in	
= 120 ksi, Fy = 48 ksi, Ft = 90 ksi, Min Dia = 0.3026 in, Area = 0.0702 in -	Т	
	rew, Type F, Black Phosphate and Ol	1
rew Properties: 5/16"-18 x 2" 6-Lobe Flat Head Floorboard Thread Cutting = 120 ksi, Fy = 48 ksi, Ft = 90 ksi, Min Dia = 0.3026 in, Area = 0.0702 in ² M _{APPLIED} = Load x Length		

Shear Capacity of Screw (ADM 2010 J5.6)

VAPPLIED =	1.658 kips	(TP-1)
Number of Screws in Shear = Shear Applied, Vapplied =	4 0.414 kips	Per Screw
Tensile Ultimate Strength of Member in Contact with Screw Head, F_{tu1} =	38 ksi	Note: 1/2 of depth subtracted from th
Factor of Safety on Ultimate Strength, n_{0} =	1.95	as screw is countersunk
Check 1) Screw Shear and Bearing Strength, Pv =	6.099 kips	(Eg. J.5-12)
Thickness of Member Not in Contact with Screw Head, t_2 =	1.000 in	
Check 2) Screw Shear and Bearing Strength, Pv =	11.069 kips	(Eq. J.5-12)
Check 3) Screw Shear and Bearing Strength, Pv =	N/A	(Eq. J.5-13)
Nominal Shear Strength of a Screw, Pss =	5.522 kips	
Check 4) Screw Shear and Bearing Strength, Pv =	1.473 kips	(Eq. J.5-14)
Minimum Screw Shear and Bearing Strength, Pvmin =	1. 47 3 kips	OK > 0.414 kips

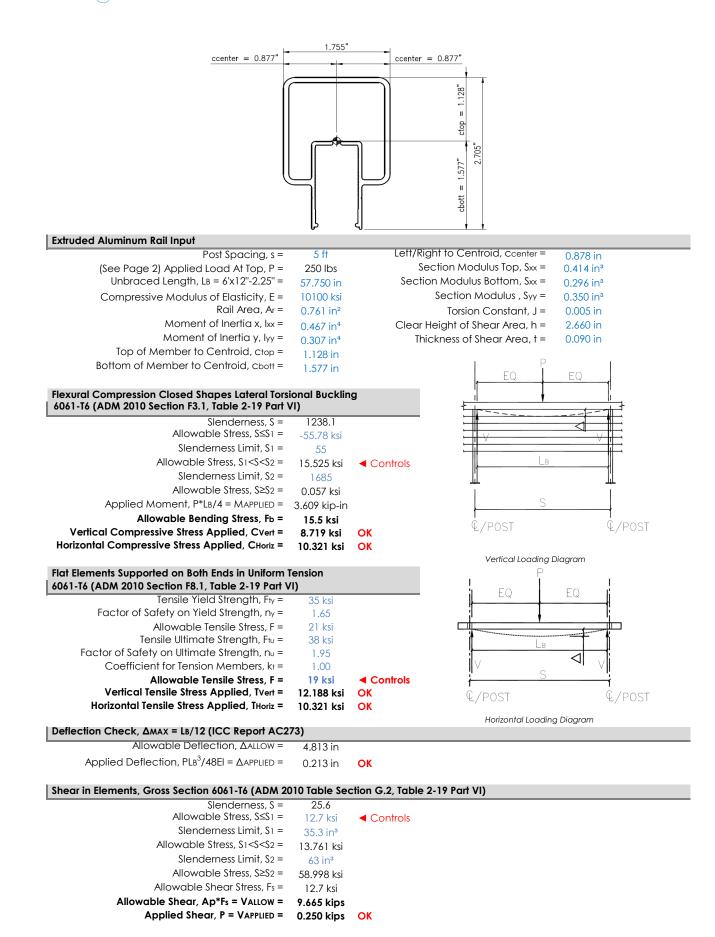
		Project No. 17067.00	Date:
	SUBJECT: Base Plate Attachment	Design:	Section:
WfK engineers	SUBJECT: Base Plate Attachment PROJECT: Stainless Cable Solutions Handrail System	Checked: JF	Page: 8 of 16

ase Plate Anchorage (Lag Screws) Per 2012 National Design Specification for Wood Construction				
Applied Moment at TP100, Mapplied =	11.375 kip-in	(Page 4)		
Edge of Baseplate to Centerline of Tension Anchorage, lanc =	4.360 in			
Number of Screws in Tension =	2			
Applied Tension at Anchor Bolt/Screw, Tapplied =	1.304 kips			
Vapplied =	0.250 kips	(Page 4)		
Number of Screws in Shear =	4			
Shear Applied, Vapplied =	0.063 kips	Per Screw		
ag Screw Reference Withdrawl Design Value (G=0.46, D=3/8"), W =	269 lbs	(Per Table 11.2A)		
Penetration Depth, d =	4.500 in			
Allowable Lag Screw Tension, Tallowable =	1.937 kips	OK > 1.304 kips		
Lag Screw Reference Lateral Design Value (G=0.46, D=3/8"), Z =	170 lbs	(Per Table 11K)		
Allowable Lag Screw Shear, Vallowable =	0.170 kips	OK > 0.063 kips		

Use (4) %" Dia SS304 Lag Screws with 6" Min Penetration into Min (1) 6x6 or (2) 3x6 Hem-Fir #2 (1.5" Min Edge Distance)

Bolt diameter =	0.375 in	
Diameter of washer =	2.500 in	
Area of Bearing under washer =	4.758 in ²	
Washer bearing, $F_{c perp}$ =	521 psi	(Per Table 4A)
Allowable Thru-Bolt Tension, Tallowable =	2.209 kips	OK > 1.304 kips
Lag Screw Reference Lateral Design Value (G=0.46, D=3/8"), Z =	170 lbs	(No Thru-Bolt Values < 1/2" In NDS - Use Table 11K)
Allowable Thru-Bolt Shear, Vallowable =	0.170 kips	OK > 0.063 kips

Use (4) %" Dia SS304 Thru-Bolts with Min 2" Dia Heavy Washer into Min (1) 6x or (2) 3x Hem-Fir #2

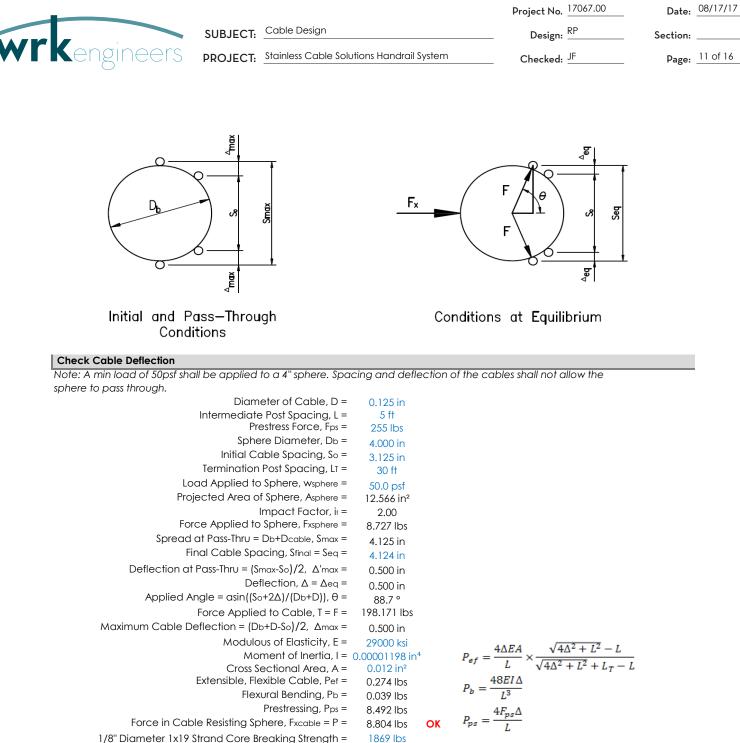

Design: ^{RP}_____

Checked: JF

Date: 08/17/17

Section:

Page: 9 of 16

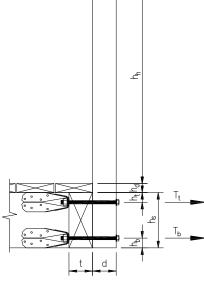

SUBJECT: Rail Design

PROJECT: Stainless Cable Solutions Handrail System

wrkengineers	SUBJECT: Fasica Mount Design PROJECT: Stainless Cable Solutions Handrail System		Project No. <u>17067.00</u> Design: <u>RP</u> Checked: <u>JF</u>	Date: 08/17/17 Section: Page: 10 of 16
		RCB100 7 STAIR RAIL	2x1 ^{1/} 2" PHILLIPS SCREWS -	
Check Fascia Mount			-1	
Tensile Ultimate Strength o	Thillips Pan Head Sheet Metal Screws - Type A, 18-8 Diameter of Screw, dscrew = Thickness of Post, tpost = Area of Engaged Post in Shear, Avpost = Number of Screws in Shear = Factor of Safety on Screw Connections, ns = f Member Not in Contact with Screw Head, Ftu2 = Shear Strength of Screw, Vscrew = illips Pan Head Self Drilling Screw Zinc #3 Point Diameter of Screw, dscrew =	0.189 in 0.125 in 0.024 in ² 2 3.00 38 ksi	е/ ОК > 0.250 kips	
	Thickness of Post, tpost =	0.125 in		
	Area of Engaged Post in Shear, Avpost =	0.024 in ²		
Tensile Ultimate Strength o	Number of Screws in Shear = Factor of Safety on Screw Connections, ns = f Member Not in Contact with Screw Head, Ftu2 =	2 3.00 38 ksi		
	Shear Strength of Screw, Vscrew =	0.614 kips	OK > 0.250 kips	
Charle State Dail A damates				
Check Stair Rail Adapter	illips Pan Head Self Drilling Screw Zinc #3 Point See		/0	
Noie. 03e3 (2) #10-10x3/4 111		CHECK ADD		
Note: Uses (2) #10-16x3/4" Phi	illips Pan Head Self Drilling Screw Zinc #3 Point See Applied Shear, Vbase = Vconn = Vapplied =	Check Abov 1.658 kips		
Di	istance from Center of Bolt to Face of Base, larm =	0.655 in		
	Applied Moment, Mapplied =	1.085 kip-in		
Dista	nce from Edge of Base to Center of Screw, Ibase =	1.450 in		
	Applied Tension, Tapplied =	0.749 kips		
	Diameter of Screw, dscrew = Thickness of Post, tpost =	0.194 in 0.125 in		
	Area of Engaged Post in Shear, Avpost =	0.125 m 0.024 in ²		
	Number of Screws in Shear =	2		
	Factor of Safety on Screw Connections, $n_s =$	3.00		

Tensile Ultimate Strength of Member Not in Contact with Screw Head, Ftu2 = 38 ksi

Shear Strength of Screw, Vscrew = 0.614 kips OK > 0.250 kips


1/8" Diameter 7x7 Strand Core Breaking Strength = 1566 lbs

s Controls (OK < 310lbs)</p>

	SUBJECT: Alum			Project No. 17067.00 _ Design: RP	Section: _
Kengineers PROJECT: Stainless Cable Solutions Handrail System			_ Checked: J ^F	Page: 1	
					_
Extruded Aluminum Post Input	Post Spacing s =	5 ft		$\square \square \square$	\bigcirc
	Post Spacing, s = stress Force, Fps =	255 lbs		ſ `	2
	ble Spacing, So =	3.125 in			-
Unbraced Length = 4	· -	40.625 in			=
Distri	ibuted Load, w =	81.6 lb-in			
	Post Area, Ap =	1.529 in ²			
Compressive Modulu		10100 ksi			
Compression Section		0.836 in ³			
	of Inertia, $I_X > I_Y =$	0.940 in⁴	2		
	sion Constant, J = of Shear Area, h =	0.260 in 2.250 in) (
0	of Shear Area, t =	0.250 in			
Moment From Code Po		11.375 kip-in	(Page 4)		
Moment From Cable	Prestress, Mpstr =	16.834 kip-in	 Controls TP100 Design 		
Flat Elements Supported on Bot	h Ends in Uniform (Compression 60	161-T6 (ADM 2010 Section F	35 4 2 Table 2-19 Part V	n
	Slenderness, S =	16.0			1
Allowo	able Stress, S≤S1 =	21.2 ksi	 Controls 		
	derness Limit, S1 =	21			
	e Stress, S1 <s<s2 =<="" td=""><td>22.6 ksi</td><td></td><td></td><td></td></s<s2>	22.6 ksi			
	derness Limit, S2 =	33			
	able Stress, S≥S2 = ending Stress, Fb =	36.3 ksi			
Allowable Moment,		21.2 ksi 17.715 kip-in			
Applied Moment, w*l		16.834 kip-in	ОК		
Elevural Compression Closed S	hanes Lateral Tors	ional Buckling /		F3 1 Table 2-19 Part VI	
Flexural Compression Closed S	Shapes Lateral Tors Slenderness, S =			F3.1, Table 2-19 Part VI	
P		ional Buckling 6 137.4 7.63 ksi		F3.1, Table 2-19 Part VI	
Allowo	Slenderness, S = able Stress, S≤S1 = derness Limit, S1 =	137.4		F3.1, Table 2-19 Part VI	
Allowc Slenc Allowable	Slenderness, S = able Stress, S≤S1 = derness Limit, S1 = e Stress, S1 <s<s2 =<="" td=""><td>137.4 7.63 ksi</td><td></td><td>F3.1, Table 2-19 Part VI</td><td>)</td></s<s2>	137.4 7.63 ksi		F3.1, Table 2-19 Part VI)
Allowa Siena Allowable Siena	Slenderness, S = able Stress, S≤S1 = derness Limit, S1 = e Stress, S1 <s<s2 =<br="">derness Limit, S2 =</s<s2>	137.4 7.63 ksi 55	061-T6 (ADM 2010 Section	F3.1, Table 2-19 Part VI	
Allowc Slenc Allowable Slenc Allowc	Slenderness, S = able Stress, S≤S1 = derness Limit, S1 = e Stress, S1 <s<s2 =<br="">derness Limit, S2 = able Stress, S≥S2 =</s<s2>	137.4 7.63 ksi 55 21.110 ksi 1685 4.609 ksi	061-T6 (ADM 2010 Section	F3.1, Table 2-19 Part VI	
Allowa Siena Allowable Siena Allowa Allowable Ber	Slenderness, S = able Stress, S≤S1 = derness Limit, S1 = e Stress, S1 <s<s2 =<br="">derness Limit, S2 =</s<s2>	137.4 7.63 ksi 55 21.110 ksi 1685 4.609 ksi 21.1 ksi	Controls	F3.1, Table 2-19 Part VI)	
Allowd Slend Allowable Slend Allowd Allowable Ber Applied Ber	Slenderness, S = able Stress, S≤S1 = derness Limit, S1 = e Stress, S1 <s<s2 =<br="">derness Limit, S2 = able Stress, S≥S2 = nding Stress, Fa = nding Stress, Fb =</s<s2>	137.4 7.63 ksi 55 21.110 ksi 1685 4.609 ksi 21.1 ksi 20.145 ksi	061-T6 (ADM 2010 Section	F3.1, Table 2-19 Part VI)	
Allowc Slenc Allowable Slenc Allowa Allowable Ber Applied Ber Applied Ber	Slenderness, S = able Stress, S≤S1 = derness Limit, S1 = e Stress, S1 <s<s2 =<br="">derness Limit, S2 = able Stress, S≥S2 = nding Stress, Fa = nding Stress, Fb =</s<s2>	137.4 7.63 ksi 55 21.110 ksi 1685 4.609 ksi 21.1 ksi 20.145 ksi	Controls	F3.1, Table 2-19 Part VI)	
Allowc Slenc Allowable Slenc Allowa Allowable Ber Applied Ber Applied Ber	Slenderness, S = able Stress, S≤S1 = derness Limit, S1 = e Stress, S1 <s<s2 =<br="">derness Limit, S2 = able Stress, S≥S2 = nding Stress, Fa = nding Stress, Fb = 2 (ICC Report AC23) effection, ∆allow =</s<s2>	137.4 7.63 ksi 55 21.110 ksi 1685 4.609 ksi 21.1 ksi 20.145 ksi	Controls	F3.1, Table 2-19 Part VI)	
Allowa Slena Allowable Slena Allowa Allowable Ber Applied Ber Applied Ber Applied Deflection Check, Δmax = LB/12 Allowable Def	Slenderness, S = able Stress, S≤S1 = derness Limit, S1 = e Stress, S1 <s<s2 =<br="">derness Limit, S2 = able Stress, S≥S2 = nding Stress, Fa = nding Stress, Fb = 2 (ICC Report AC2) effection, ∆allow = 3³/3El = ∆applied =</s<s2>	137.4 7.63 ksi 55 21.110 ksi 1685 4.609 ksi 21.1 ksi 20.145 ksi 73) 3.385 in 0.600 in	Controls	F3.1, Table 2-19 Part VI	
Allowa Slena Allowable Slena Allowable Ber Applied Ber Applied Ber Applied Deflection, PLB Applied Deflection, PLB Shear in Elements, Gross Sectio Allowa	Slenderness, S = able Stress, S≤S1 = derness Limit, S1 = e Stress, S1 <s<s2 =<br="">derness Limit, S2 = able Stress, S≥S2 = nding Stress, Fa = nding Stress, Fb = 2 (ICC Report AC2) effection, ∆allow = a³/3EI = ∆applied = m 6061-T6 (ADM 20 able Stress, S≤S1 =</s<s2>	137.4 7.63 ksi 55 21.110 ksi 1685 4.609 ksi 21.1 ksi 20.145 ksi 73) 3.385 in 0.600 in	Controls	F3.1, Table 2-19 Part VI	
Allowa Slena Allowable Slena Allowable Ben Applied Ben Applied Ben Applied Deflection, PLB Applied Deflection, PLB Shear in Elements, Gross Sectio Allowa Slena	Slenderness, S = able Stress, S≤S1 = derness Limit, S1 = e Stress, S1 <s<s2 =<br="">derness Limit, S2 = able Stress, S≥S2 = nding Stress, Fa = nding Stress, Fb = 2 (ICC Report AC27) effection, ∆allow = a³/3EI = ∆applied = n 6061-T6 (ADM 20) able Stress, S≤S1 = derness Limit, S1 =</s<s2>	137.4 7.63 ksi 55 21.110 ksi 1685 4.609 ksi 21.1 ksi 20.145 ksi 73) 3.385 in 0.600 in	Controls OK OK OK n G.2, Table 2-19 Part VI)	F3.1, Table 2-19 Part VI	
Allowa Slena Allowable Slena Allowable Ber Applied Ber Applied Ber Applied Deflection, PLB Allowable De Applied Deflection, PLB Shear in Elements, Gross Sectio Allowable Allowable	Slenderness, S = able Stress, S \leq 1 = derness Limit, S1 = e Stress, S1 <s<s2 =<br="">able Stress, S1<s<s2 =<br="">able Stress, S\geq2 = nding Stress, Fa = nding Stress, Fb = 2 (ICC Report AC27) effection, Δallow = a³/3E1 = Δapplied = in 6061-T6 (ADM 20) able Stress, S\leqS1 = derness Limit, S1 = e Stress, S1<s<s2 =<="" td=""><td>137.4 7.63 ksi 55 21.110 ksi 1685 4.609 ksi 21.1 ksi 20.145 ksi 73) 3.385 in 0.600 in 12.7 ksi 35.3 14.8 ksi</td><td>Controls OK OK OK n G.2, Table 2-19 Part VI)</td><td>F3.1, Table 2-19 Part VI</td><td></td></s<s2></s<s2></s<s2>	137.4 7.63 ksi 55 21.110 ksi 1685 4.609 ksi 21.1 ksi 20.145 ksi 73) 3.385 in 0.600 in 12.7 ksi 35.3 14.8 ksi	Controls OK OK OK n G.2, Table 2-19 Part VI)	F3.1, Table 2-19 Part VI	
Allowa Slena Allowable Slena Allowable Ber Applied Ber Applied Ber Applied Deflection, PLB Allowable De Applied Deflection, PLB Shear in Elements, Gross Sectio Allowable Slena Allowable Slena	Slenderness, S = able Stress, S \leq S1 = derness Limit, S1 = e Stress, S1 <s<s2 =<br="">able Stress, S1<s<s2 =<br="">able Stress, S\geqS2 = nding Stress, Fa = nding Stress, Fb = 2 (ICC Report AC27) effection, Δallow = a³/3EI = Δapplied = in 6061-T6 (ADM 20) able Stress, S\leqS1 = derness Limit, S1 = e Stress, S1<s<s2 =<br="">derness Limit, S2 =</s<s2></s<s2></s<s2>	137.4 7.63 ksi 55 21.110 ksi 1685 4.609 ksi 21.1 ksi 20.145 ksi 73) 3.385 in 0.600 in 12.7 ksi 35.3 14.8 ksi 63.0	Controls OK OK OK n G.2, Table 2-19 Part VI)	F3.1, Table 2-19 Part VI)	
Allowa Slena Allowable Slena Allowable Ber Applied Ber Applied Ber Applied Deflection, PLB Shear in Elements, Gross Sectio Allowable Slena Allowable Slena Allowable	Slenderness, S = able Stress, S \leq 1 = derness Limit, S1 = e Stress, S1 <s<s2 =<br="">able Stress, S1<s<s2 =<br="">able Stress, S\geq2 = nding Stress, Fa = nding Stress, Fb = 2 (ICC Report AC22) effection, Δallow = a³/3E1 = Δapplied = n 6061-T6 (ADM 20 able Stress, S\leqS1 = derness Limit, S1 = e Stress, S1<s<s2 =<br="">derness Limit, S2 = able Stress, S\geqS2 =</s<s2></s<s2></s<s2>	137.4 7.63 ksi 55 21.110 ksi 1685 4.609 ksi 21.1 ksi 20.145 ksi 73) 3.385 in 0.600 in 12.7 ksi 35.3 14.8 ksi 63.0 151.0 ksi	Controls OK OK OK n G.2, Table 2-19 Part VI)	F3.1, Table 2-19 Part VI)	
Allowa Slena Allowable Slena Allowable Ber Applied Ber Applied Ber Applied Deflection, PLB Shear in Elements, Gross Sectio Allowable Slena Allowable Slena Allowable	Slenderness, S = able Stress, S \leq S1 = derness Limit, S1 = e Stress, S1 <s<s2 =<br="">able Stress, S1<s<s2 =<br="">able Stress, S\geq2 = nding Stress, Fa = nding Stress, Fb = 2 (ICC Report AC22) effection, Δallow = a³/3E1 = Δapplied = n 6061-T6 (ADM 20 able Stress, S\leqS1 = derness Limit, S1 = e Stress, S1<s<s2 =<br="">derness Limit, S2 = able Stress, S\geqS2 = e Shear Stress, Fs =</s<s2></s<s2></s<s2>	137.4 7.63 ksi 55 21.110 ksi 1685 4.609 ksi 21.1 ksi 20.145 ksi 73) 3.385 in 0.600 in 12.7 ksi 35.3 14.8 ksi 63.0	Controls OK OK OK n G.2, Table 2-19 Part VI)	F3.1, Table 2-19 Part VI)	

					Project No.		
Kengineers	SUBJECT: Hand				Design:	RP	Secti
Nengineers	PROJECT: Stain	less Cable Solution:	s Handrail Sys	tem	Checked:	JF	Pa
Extruded Aluminum Stair Hand							
	Post Spacing, s = Force, F =	5 ft 250 lbs		†1 = †2 =	0.125 in 0.125 in		а
	Moment Arm =	2.750 in		a =	0.625 in		
Initial C	able Spacing, So =	0.000 in		b =	1.750 in		t1
Unb	raced Length, LB =	1.600 in		J =	0.078 in ⁴	b	
	Post Area, Ap =	0.531 in ²		Sx =	0.178 in ³		
Compressive Modu	,	10100 ksi		Sy =	0.079 in ³		
	ction Modulus, Sy = ment of Inertia, Iy =	0.079 in³ 0.019 in⁴		lx = ly =	0.100 in ⁴ 0.019 in ⁴		
	prsion Constant, J =	0.079 in ⁴		Area =	0.019 In ²		
	t From Railing, M =	0.688 kip-in		wall/thick =	13.000		
Flat Elements Supported on Bo		Slenderness, S =	12.0		1.2, Table 2-1	9 Part V	1)
		able Stress, S≤S1 = derness Limit, S1 =	21.2 ksi	 Controls 			
		e Stress, $S_1 < S < S_2 =$	21 23.8 ksi				
		derness Limit, S2 =	23.8 KSI 33				
		able Stress, $S \ge S_2 =$	48.3 ksi				
		nding Stress, Fb =	21.2 ksi				
	Allowable Moment,	$SC^*Fb = Mallow =$					
	Applied Mo	ment, Mapplied =	0.688 kip-in	OK			
Deflection Check, $\Delta MAX = LB/1$	• •	•	0.122 in				
	Allowable De	eflection, Δ allow =	0.133 in	OK			
Apr	Allowable De blied Deflection, PLB	tlection, Δ allow = $3^3/3$ El = Δ applied =	0.002 in	ОК			
	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20 Allowa	flection, Δ allow = $^{3}/3EI = \Delta$ applied = 10 Table Section able Stress, S \leq S1 =	0.002 in				
Apr	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20 Allowa Slend	Hection, Δ allow = ³ /3El = Δ applied = 10 Table Section (able Stress, S \leq S1 = derness Limit, S1 =	0.002 in G.2, Table 2- 12.7 ksi 35.3	19 Part VI)			
Apr	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20 Allowa Slend Allowable	thection, Δ allow = ${}^{3}/3EI = \Delta$ applied = 10 Table Section (able Stress, S <s1 =<br="">derness Limit, S1 = \otimes Stress, S1<s<s2 =<="" td=""><td>0.002 in G.2, Table 2- 12.7 ksi 35.3 15.2 ksi</td><td>19 Part VI)</td><td></td><td></td><td></td></s<s2></s1>	0.002 in G.2, Table 2- 12.7 ksi 35.3 15.2 ksi	19 Part VI)			
Apr	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20 Allowa Slend Allowable Slend	thection, Δ allow = $3^{3}/3EI = \Delta$ applied = 10 Table Section (able Stress, S <s1 =<br="">derness Limit, S1 = 3 Stress, S1<s<s2 =<br="">derness Limit, S2 =</s<s2></s1>	0.002 in G.2, Table 2- 12.7 ksi 35.3 15.2 ksi 63.0	19 Part VI)			
Apr	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20 Allowa Slend Allowable Slend Allowa	Hection, Δ allow = ${}^{3}/3EI = \Delta$ applied = 10 Table Section (able Stress, S <s1 =<br="">derness Limit, S1 = 3 Stress, S1<s<s2 =<br="">derness Limit, S2 = able Stress, S2S2 =</s<s2></s1>	0.002 in G.2, Table 2- 12.7 ksi 35.3 15.2 ksi 63.0 268.5 ksi	19 Part VI)			
Apr	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20 Allowa Slend Allowable Slend Allowable	Hection, Δ allow = ³ /3El = Δ applied = 10 Table Section (able Stress, S <s1 =<br="">derness Limit, S1 = δ Stress, S1<s<s2 =<br="">derness Limit, S2 = able Stress, S≥S2 = Shear Stress, Fs =</s<s2></s1>	0.002 in G.2, Table 2- 12.7 ksi 35.3 15.2 ksi 63.0 268.5 ksi 13 ksi	19 Part VI)			
Apr	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20 Allowa Slend Allowable Slend Allowable Allowable Allowable Shear,	Hection, Δ allow = ³ /3El = Δ applied = 10 Table Section (able Stress, S <s1 =<br="">derness Limit, S1 = δ Stress, S1<s<s2 =<br="">derness Limit, S2 = able Stress, S≥S2 = Shear Stress, Fs =</s<s2></s1>	0.002 in G.2, Table 2- 12.7 ksi 35.3 15.2 ksi 63.0 268.5 ksi	19 Part VI) Controls			
Apr	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20 Allowa Slend Allowable Slend Allowable Allowable Allowable Shear, Applied She Section 7.3.2)	Hection, $\Delta allow =$ $3^3/3El = \Delta applied =$ 10 Table Section (able Stress, $S \le S1 =$ derness Limit, $S1 =$ 9 Stress, $S1 \le S \le S2 =$ derness Limit, $S2 =$ able Stress, $S \ge S2 =$ Shear Stress, $Fs =$, $Ap^*Fs = Vallow =$ ear, $P = Vapplied =$	0.002 in 3.2, Table 2- 12.7 ksi 35.3 15.2 ksi 63.0 268.5 ksi 13 ksi 6.747 kips 0.250 kips	• Controls			
App Shear in Elements, Gross Section	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20 Allowa Slend Allowable Slend Allowable Allowable Allowable Shear, Applied She Section 7.3.2) Filler Shear Ultimate	Thection, $\Delta allow =$ $a^3/3El = \Delta applied =$ 10 Table Section (able Stress, $S \le S1 =$ derness Limit, $S1 =$ a stress, $S1 \le S \le S2 =$ derness Limit, $S2 =$ able Stress, $S \ge S2 =$ Shear Stress, $Fs =$, Ap*Fs = Vallow = ear, P = Vapplied = e Strength, Fsw =	0.002 in 3.2, Table 2- 12.7 ksi 35.3 15.2 ksi 63.0 268.5 ksi 13 ksi 6.747 kips 0.250 kips 17 ksi	19 Part VI) Controls			
App Shear in Elements, Gross Section	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20 Allowa Slend Allowable Slend Allowable Allowable Allowable Shear, Applied She Section 7.3.2) Filler Shear Ultimate Base Metal	thection, $\Delta allow =$ $a^3/3El = \Delta applied =$ 10 Table Section (able Stress, S \leq S1 = derness Limit, S1 = a Stress, S1 $<$ S \leq S2 = derness Limit, S2 = able Stress, S \geq S2 = Shear Stress, Fs = , Ap*Fs = Vallow = ear, P = Vapplied = e Strength, Fsw = Strength, Fsw =	0.002 in 3.2, Table 2- 12.7 ksi 35.3 15.2 ksi 63.0 268.5 ksi 13 ksi 6.747 kips 0.250 kips 17 ksi 21 ksi	• Controls			
App Shear in Elements, Gross Section	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20 Allowa Slend Allowable Slend Allowable Allowable Allowable Shear, Applied Shear, Section 7.3.2) Filler Shear Ultimate Base Metal Weld Fille	thection, Δ allow = $3^3/3EI = \Delta$ applied = 10 Table Section (able Stress, S \leq SI = derness Limit, SI = a stress, SI $<$ SC2 = derness Limit, S2 = able Stress, S \geq S2 = Shear Stress, Fs = , Ap*Fs = Vallow = ear, P = Vapplied = e Strength, Fsw = Strength, Fsw = strength, Fsw = at Weld size, Se =	0.002 in 3.2, Table 2- 12.7 ksi 35.3 15.2 ksi 63.0 268.5 ksi 13 ksi 6.747 kips 0.250 kips 17 ksi 21 ksi 0.188 in	• Controls			
App Shear in Elements, Gross Section	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20 Allowa Slend Allowable Slend Allowable Allowable Allowable Shear, Applied Shear, Section 7.3.2) Filler Shear Ultimate Base Metal Weld Fille Weld Sect	thection, Δ allow = $3^3/3El = \Delta$ applied = 10 Table Section (able Stress, S \leq S1 = derness Limit, S1 = a stress, S1 $<$ S \leq S2 = derness Limit, S2 = able Stress, S \geq S2 = Shear Stress, Fs = , Ap*Fs = Vallow = ear, P = Vapplied = e Strength, Fsw = Strength, Fsw = strength, Fsw 5 = tweld size, Se = tion Modulus, S =	0.002 in 3.2, Table 2- 12.7 ksi 35.3 15.2 ksi 63.0 268.5 ksi 13 ksi 6.747 kips 0.250 kips 17 ksi 21 ksi 0.188 in 0.271 in ³	• Controls			
App Shear in Elements, Gross Section	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20 Allowa Slend Allowable Slend Allowable Allowable Allowable Shear, Applied Shear, Section 7.3.2) Filler Shear Ultimate Base Metal Weld Fille Weld Sect Facto	thection, Δ allow = $3^3/3El = \Delta$ applied = 10 Table Section (able Stress, S \leq S1 = derness Limit, S1 = a stress, S1 $<$ S \leq S2 = derness Limit, S2 = able Stress, S \geq S2 = shear Stress, Fs = , Ap*Fs = Vallow = ear, P = Vapplied = e Strength, Fsw = Strength, Fsw = strength, Fsw = at Weld size, Se = tion Modulus, S = or of Safety, nu =	0.002 in 3.2, Table 2- 12.7 ksi 35.3 15.2 ksi 63.0 268.5 ksi 13 ksi 6.747 kips 0.250 kips 17 ksi 21 ksi 0.188 in 0.271 in ³ 1.95	• Controls			
App Shear in Elements, Gross Section	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20 Allowa Slend Allowable Slend Allowable Allowable Shear, Applied Shear Section 7.3.2) Filler Shear Ultimate Base Metal Weld Fille Weld Sect Facto Allowable Weld Str	thection, Δ allow = $3^3/3El = \Delta$ applied = 10 Table Section (able Stress, S \leq S1 = derness Limit, S1 = a stress, S1 $<$ S \leq S2 = derness Limit, S2 = able Stress, S \geq S2 = shear Stress, Fs = , Ap*Fs = Vallow = ear, P = Vapplied = e Strength, Fsw = Strength, Fsw = strength, Fsw = at Weld size, Se = tion Modulus, S = or of Safety, nu =	0.002 in 3.2, Table 2- 12.7 ksi 35.3 15.2 ksi 63.0 268.5 ksi 13 ksi 6.747 kips 0.250 kips 17 ksi 21 ksi 0.188 in 0.271 in ³	• Controls			
App Shear in Elements, Gross Section Fillet Weld Strength (ADM 2005 Shear Capacity of Screw (ADM	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20 Allowa Slend Allowable Slend Allowable Allowable Shear, Applied Shear Section 7.3.2) Filler Shear Ultimati Base Metal Weld Fille Weld Sect Facto Allowable Weld St Applied Weld St Applied Weld St	Thection, $\Delta allow =$ $a^3/3El = \Delta applied =$ 10 Table Section (able Stress, $S \le S1 =$ derness Limit, $S1 =$ derness Limit, $S2 =$ able Stress, $S \le S2 =$ able Stress, $S \ge S2 =$ shear Stress, $S \ge S2 =$ Shear Stress, $Fs =$, Ap*Fs = Vallow = tear, P = Vapplied = e Strength, Fsw = Strength, Fsw = at Weld size, $Se =$ tion Modulus, $S =$ or of Safety, nu = tress, M/S = fw =	0.002 in 3.2, Table 2- 12.7 ksi 35.3 15.2 ksi 63.0 268.5 ksi 13 ksi 6.747 kips 0.250 kips 17 ksi 21 ksi 0.188 in 0.271 in ³ 1.95 6.164 ksi	Controls OK Controls			
App Shear in Elements, Gross Section Fillet Weld Strength (ADM 2005 Shear Capacity of Screw (ADM	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20 Allowa Slend Allowable Slend Allowable Allowable Shear, Applied Shear Section 7.3.2) Filler Shear Ultimati Base Metal Weld Sille Weld Sect Facto Allowable Weld St Allowable Weld St Allowable Weld St Applied Weld St Applied Weld St	Thection, $\Delta allow =$ $a^3/3El = \Delta applied =$ 10 Table Section (able Stress, $S \le S1 =$ derness Limit, $S1 =$ derness Limit, $S2 =$ able Stress, $S \le S2 =$ able Stress, $S \ge S2 =$ shear Stress, $S \ge S2 =$ Shear Stress, $Fs =$, Ap*Fs = Vallow = tear, P = Vapplied = e Strength, Fsw = Strength, Fsw = at Weld size, $Se =$ tion Modulus, $S =$ or of Safety, nu = tress, M/S = fw = Ingth of Member	0.002 in 3.2, Table 2- 12.7 ksi 35.3 15.2 ksi 63.0 268.5 ksi 13 ksi 6.747 kips 0.250 kips 17 ksi 21 ksi 0.188 in 0.271 in ³ 1.95 6.164 ksi 2.537 ksi	Controls OK Controls			
App Shear in Elements, Gross Section Fillet Weld Strength (ADM 2005 Shear Capacity of Screw (ADM	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20 Allowa Slend Allowable Slend Allowable Allowable Shear, Applied Shear Section 7.3.2) Filler Shear Ultimat Base Metal Weld Sect Facto Allowable Weld St Allowable Weld St Allowable Weld St Allowable Weld St Allowable Weld St Allowable Weld St Applied Weld St Applied Weld St A 2010 J5.6)	Thection, $\Delta allow =$ $a^3/3El = \Delta applied =$ 10 Table Section (able Stress, $S \le S1 =$ derness Limit, $S1 =$ derness Limit, $S2 =$ able Stress, $S \le S2 =$ able Stress, $S \ge S2 =$ shear Stress, $S \ge S2 =$ Shear Stress, $Fs =$, Ap*Fs = Vallow = tear, P = Vapplied = e Strength, Fsw = Strength, Fsw = at Weld size, $Se =$ tion Modulus, $S =$ or of Safety, nu = tress, M/S = fw = ingth of Member rew head, Ftu =	0.002 in 3.2, Table 2- 12.7 ksi 35.3 15.2 ksi 63.0 268.5 ksi 13 ksi 6.747 kips 0.250 kips 17 ksi 21 ksi 0.188 in 0.271 in ³ 1.95 6.164 ksi 2.537 ksi 38 ksi	Controls OK Controls			
App Shear in Elements, Gross Section Fillet Weld Strength (ADM 2005 Shear Capacity of Screw (ADM Thick. of	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20 Allowa Slend Allowable Slend Allowable Allowable Allowable Shear, Applied Shear Section 7.3.2) Filler Shear Ultimate Base Metal Weld Sect Facto Allowable Weld St East Allowable Weld St Allowable Weld St Allowable Weld St Allowable Weld St Allowable Weld St Applied Weld St Applied Weld St Applied Weld St Applied Weld St Applied Weld St Acona J5.6)	Thection, $\Delta allow =$ $a^3/3El = \Delta applied =$ 10 Table Section (able Stress, $S \le S1 =$ derness Limit, $S1 =$ a stress, $S1 < S < S2 =derness Limit, S2 =able Stress, S > S2 =back Stress, S =back Stress, S$	0.002 in 3.2, Table 2- 12.7 ksi 35.3 15.2 ksi 63.0 268.5 ksi 13 ksi 6.747 kips 0.250 kips 17 ksi 21 ksi 0.188 in 0.271 in ³ 1.95 6.164 ksi 2.537 ksi	Controls OK Controls			
App Shear in Elements, Gross Section Fillet Weld Strength (ADM 2005 Shear Capacity of Screw (ADM T Thick. of	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20 Allowa Slend Allowable Slend Allowable Allowable Allowable Shear, Applied Shear Section 7.3.2) Filler Shear Ultimate Base Metal Weld Sect Facto Allowable Weld Str Applied Weld Str Member in Contact	Thection, $\Delta allow =$ $a^3/3El = \Delta applied =$ 10 Table Section (able Stress, $S \le S1 =$ derness Limit, $S1 =$ a stress, $S1 \le S \le S2 =$ derness Limit, $S2 =$ $able Stress, S \ge S2 =$ $bac Stress, S \ge S2 =$ b	0.002 in 3.2, Table 2- 12.7 ksi 35.3 15.2 ksi 63.0 268.5 ksi 13 ksi 6.747 kips 0.250 kips 17 ksi 21 ksi 0.188 in 0.271 in ³ 1.95 6.164 ksi 2.537 ksi 38 ksi 0.065 in	Controls OK Controls			
App Shear in Elements, Gross Section Fillet Weld Strength (ADM 2005 Shear Capacity of Screw (ADM T Thick. of T No	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20 Allowa Slend Allowable Slend Allowable Allowable Allowable Shear, Applied Shear Section 7.3.2) Filler Shear Ultimate Base Metal Weld Sect Facto Allowable Weld St East Allowable Weld St Allowable Weld St Allowable Weld St Allowable Weld St Allowable Weld St Applied Weld St Applied Weld St Applied Weld St Applied Weld St Applied Weld St Acona J5.6)	thection, $\Delta allow =$ $a^3/3El = \Delta applied =$ 10 Table Section of able Stress, $S \le S1 =$ derness Limit, $S1 =$ a stress, $S1 < S < S2 =derness Limit, S2 =able Stress, S2S2 =able Stress, S > S2 =bale Stress, S > S2 =$	0.002 in 3.2, Table 2- 12.7 ksi 35.3 15.2 ksi 63.0 268.5 ksi 13 ksi 6.747 kips 0.250 kips 17 ksi 21 ksi 0.188 in 0.271 in ³ 1.95 6.164 ksi 2.537 ksi 38 ksi	Controls OK Controls			
App Shear in Elements, Gross Section Fillet Weld Strength (ADM 2005 Shear Capacity of Screw (ADM Thick. of No Thick. of Mer	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20 Allowa Slend Allowable Slend Allowable Allowable Allowable Shear, Applied Shear Section 7.3.2) Filler Shear Ultimate Base Metal Weld Sille Weld Sect Facto Allowable Weld St Allowable Weld St Applied W	thection, $\Delta allow =$ $a^3/3El = \Delta applied =$ 10 Table Section of able Stress, $S \le S1 =$ derness Limit, $S1 =$ a stress, $S1 < S < S2 =derness Limit, S2 =able Stress, S > S2 =bear Stress, S > S2 =bear Stress, S > S2 =bear Stress, Fs =able Stress, S > S2 =bear Stress, Fs =able Stress, S > S2 =bear Stress, Fs =able Stress, S > S2 =bear Stres$	0.002 in 3.2, Table 2- 12.7 ksi 35.3 15.2 ksi 63.0 268.5 ksi 13 ksi 6.747 kips 0.250 kips 17 ksi 21 ksi 0.188 in 0.271 in ³ 1.95 6.164 ksi 2.537 ksi 38 ksi 0.065 in 38 ksi	Controls OK Controls			
App Shear in Elements, Gross Section Fillet Weld Strength (ADM 2005 Shear Capacity of Screw (ADM Thick. of No Thick. of Mer	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20 Allowa Slend Allowable Slend Allowable Allowable Allowable Shear, Applied Shear Section 7.3.2) Filler Shear Ultimate Base Metal Weld Sect Facto Allowable Weld Sti Applied Sti Appli	thection, $\Delta allow =$ $a^3/3El = \Delta applied =$ 10 Table Section of able Stress, $S \le S1 =$ derness Limit, $S1 =$ a stress, $S1 < S < S2 =derness Limit, S2 =able Stress, S > S2 =bear Stress, S > S2 =bear Stress, S > S2 =bear Stress, Fs =able Stress, S > S2 =bear Stress, Fs =able Stress, S > S2 =bear Stress, Fs =able Stress, S > S2 =bear Stres$	0.002 in 3.2, Table 2- 12.7 ksi 35.3 15.2 ksi 63.0 268.5 ksi 13 ksi 6.747 kips 0.250 kips 17 ksi 21 ksi 0.188 in 0.271 in ³ 1.95 6.164 ksi 2.537 ksi 38 ksi 0.065 in 38 ksi 0.140 in 2.363 kips 0.190 in	Controls OK Controls			
App Shear in Elements, Gross Section Fillet Weld Strength (ADM 2005 Shear Capacity of Screw (ADM Thick. of No Thick. of Mer	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20' Allowable Slend Allowable Allowable Allowable Allowable Shear, Applied Shear, Applied Shear, Base Metal Weld Fille Weld Fille Weld Sect Facto Allowable Weld Sthe Allowable Weld Sthe Allowable Weld Sthe Facto Allowable Weld Sthe Allowable Weld Sthe Applied Weld Streer in Contact with scr Member in Contact fensile Ultimate Streer t in Contact with scr mber Not in Contact minal Shear Strength	The ction, $\Delta allow =$ $a^3/3El = \Delta applied =$ 10 Table Section able Stress, $S \leq S1 =$ derness Limit, $S1 =$ derness Limit, $S2 =$ derness Limit, $S2 =$ able Stress, $S \leq S2 =$ shear Stress, $S \leq S2 =$ shear, $P = Vapplied =$ e Strength, Fsw = strength, Fsw = strength, Fsw = tion Modulus, $S =$ or of Safety, nu = tress, M/S = fw = high of Member rew head, Ftu1 = t with Screw, 11 = ngth of Member rew head, Ftu2 = t with Screw, 22 = h of Screw, Pns = w Diameter, D = lo. of Screws, n =	0.002 in 3.2, Table 2- 12.7 ksi 35.3 15.2 ksi 63.0 268.5 ksi 13 ksi 6.747 kips 0.250 kips 17 ksi 21 ksi 0.188 in 0.271 in ³ 1.95 6.164 ksi 2.537 ksi 38 ksi 0.065 in 38 ksi 0.190 in 2	Controls OK Controls			
App Shear in Elements, Gross Section Fillet Weld Strength (ADM 2005 Shear Capacity of Screw (ADM Thick. of No Thick. of Mer	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20' Allowable Slend Allowable Allowable Allowable Allowable Shear, Applied Shear, Applied Shear, Applied Shear, Base Metal Weld Fille Weld Fille Weld Sect Facto Allowable Weld Sth Applied Weld St Allowable Weld St Facto Allowable Weld St Allowable Weld St Applied Weld St Applied Weld St Applied Weld St Fensile Ultimate Strer in Contact with sc Member in Contact fensile Ultimate Stren t in Contact with sc Member Not in Contact minal Shear Strengt	The ction, $\Delta allow =$ $a^3/3El = \Delta applied =$ 10 Table Section able Stress, $S \leq S1 =$ derness Limit, $S1 =$ derness Limit, $S2 =$ derness Limit, $S2 =$ able Stress, $S \leq S2 =$ shear Stress, $S \leq S2 =$ strength, $Fsw =$ a two stress, $S \leq S2 =$ a two stress, $S =$ a two	0.002 in 3.2, Table 2- 12.7 ksi 35.3 15.2 ksi 63.0 268.5 ksi 13 ksi 6.747 kips 0.250 kips 17 ksi 21 ksi 0.188 in 0.271 in ³ 1.95 6.164 ksi 2.537 ksi 38 ksi 0.065 in 38 ksi 0.140 in 2.363 kips 0.190 in 2 3.00	Controls OK Controls			
App Shear in Elements, Gross Section Fillet Weld Strength (ADM 2005 Shear Capacity of Screw (ADM Thick. of No Thick. of Mer	Allowable De blied Deflection, PLB on 6061-T6 (ADM 20' Allowable Slend Allowable Slend Allowable Allowable Allowable Section 7.3.2) Filler Shear Ultimate Base Metal Weld Shear Weld Fille Weld Sect Facto Allowable Weld Sthe Allowable Weld Sthe Facto Allowable Weld Sthe Allowable Weld Sthe Contact with scr Member in Contact fensile Ultimate Strer tin Contact with scr Member Not in Contact minal Shear Strength	tilection, Δallow = $3^3/3EI = Δ_{applied} =$ 10 Table Section able Stress, S≤S1 = derness Limit, S1 = berness Limit, S2 = derness Limit, S2 = able Stress, S≥S2 = Shear Stress, S≥S2 = Shear Stress, S≥S2 = Shear Stress, Fs = , Ap*Fs = Vallow = e Strength, Fsw = Strength, Fsw = bet Weld size, Se = tion Modulus, S = or of Safety, nu = rength, Fsw/nu = tress, M/S = fw = high of Member rew head, Ftu1 = t with Screw, 12 = hof Member rew head, Ftu2 = t with Screw, t2 = h of Screws, n = afety Factor, ns = ifety Factor, nu =	0.002 in 3.2, Table 2- 12.7 ksi 35.3 15.2 ksi 63.0 268.5 ksi 13 ksi 6.747 kips 0.250 kips 17 ksi 21 ksi 0.188 in 0.271 in ³ 1.95 6.164 ksi 2.537 ksi 38 ksi 0.065 in 38 ksi 0.190 in 2	Controls OK Controls			

wrkengineers	SUBJECT: Fascia Mount Attachment Design PROJECT: Stainless Cable Solutions Handrail System	Project No. 17067.00	Date: 08/17/17 Section: Page: 14 of 16
			o

Extruded Aluminum Post Facia Mount Input

Anchor Design Criteria		
(See Page 3) Applied Load At Top, P =	250	lbs
Height of handrail point load, hh =	42	in
Height of decking, $h_d =$	1.5	in
Height of beam, $h_s =$	9.25	in
Height of top anchor, $h_t =$	2	in
Height of bot anchor, h_b =	1.25	in
Anchor bolt spacing, s =	6	in
Unbraced Post Length, Lb =	45.5	in
Lumber species =	DF	
Thickness of joist =	3	in
Simpson Holdown =	DTT2Z	
Tension allowed, Tallowed =	2145	lbs

Tension max =	1819 lbs	ОК	
Tension applied per bottom bolt, $T_{\rm b}$ =	1569	Ibs	
Tension applied per top bolt, Tt =	1819	lbs	
Anchor Calcs			

			Project No. 17067.00	Date: 08/17/17
	SUBJECT:	Aluminum Check	Design: ^{RP}	Section:
wrkengineers	PROJECT:	Stainless Cable Solutions Handrail System	Checked: JF	Page: 15 of 16

Distribute Force T'owr 3" Trib

$$T/b = 1,05/3 = 0.62^{m}$$
Bending Loud, $M_0 = \frac{9}{4} = \frac{0.62(2)}{4} = 0.31^{m}$

$$\frac{FLE \times M2.6L}{V} \frac{VIELP NM4}{PL} \frac{PD TURE}{4} = \frac{0.62(2)}{4} = 0.31^{m}$$

$$\frac{FLE \times M2.6L}{V} \frac{VIELP NM4}{PL} \frac{PD TURE}{4}, M_{A}: (ADM Sect F.2)$$

$$M_{A} = \frac{2}{5} F_{cy} = \left[\frac{V_{H}}{3.0} (\frac{3}{3}/b)^{2} \right] \frac{V35 \text{ ksi}}{V} = 0.923^{m}$$

$$M_{A} = 1.5 \text{ Sc} F_{Y} = 1.5 (\frac{V_{V} \times 3 \times 3}{b}) \times 35 \text{ ksi} = 0.923^{m}$$

$$M_{A} = 1.5 \text{ Sc} F_{Y} = 1.5 (\frac{V_{V} \times 3 \times 3}{b}) \times 35 \text{ ksi} = 0.923^{m}$$

$$M_{A} = \frac{2.5}{5} \text{ Gr}^{23} \frac{1.65}{5} = 0.548^{m}$$

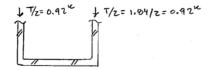
$$M_{A} = \frac{2.5}{5} \frac{G}{G} \frac{G}{23} \frac{1.65}{5} = 0.548^{m}$$

$$M_{A} = \frac{2.5}{L} \frac{(\frac{d}{C_{b}})^{V_{2}}}{(\frac{1.00}{C_{b}})^{1.45}} = \frac{2.3}{3} \left(\frac{3(2)}{1.00} \right)^{V_{2}} = 30.5 < C_{c} = 65.7$$

$$M_{A} (1 - \frac{1}{C_{c}}) + \frac{\pi^{2}ENS}{C_{c}^{25}} = 0.923(1 - \frac{36.5}{25.7}) + \frac{\pi^{2}(10.100)(30.5)(\frac{1}{2}b^{3.5} \times 3b^{2})}{(65.7)^{3}}$$

$$= 0.502 + 0.189$$

$$= 0.691^{m}$$


$$M_{A}/S_{b} = 0.691/1.65 = 0.418^{m} (500^{3})$$

$$DCR = M_{A}/(M_{A}/S_{b}) = 0.31^{m} (0.418^{m} = 0.744 < 1.0^{10} \text{ MeV}$$

			Project No. 17067.00	Date: _	08/17/17
	SUBJECT:	Post Check	Design: RP	Section: _	
ngineers	PROJECT:	Stainless Cable Solutions Handrail System	Checked: JF	Page: _	16 of 16

COMPRESSION ON POST ELEMENTS

Distribute force 'T' equally to each side

 $\frac{Compression per Member Buckling (ADM Sect E.2)}{\lambda_1 = \frac{B_c - F_{cy}}{D_c} = \frac{39.4 - 35}{0.246} = 17.9; \lambda_2 = 65.7$ $\lambda = K \lambda / r = 0.5(2.25 - 2(0.125)) / [YB 17/2] = 27.7 (E.2.1)$ $F_{c} = (B_{c} - D_{c}\lambda) \left[0.85 - 0.15 \left(\frac{C_{c} - \lambda}{C_{c} - \lambda_{1}} \right) \right] = (39.4 - 0.246(65.7)) \left[0.85 - 0.15 \left(\frac{65.7 - 27.7}{65.7 - 17.9} \right) \right] = (23.24) \left[0.73 \right]$ = 16.96 Ksi Pnc = Fc Ag = 1696 (YBx3) = 6.36 k Prc/S2=6.36/1.65= 3.85 × > 0.92 × 10k Check Torsional and Flexural-Torsional Buckling (EZ.Z) λ= π (F/Fe = π (10,100/204 = ZZ.1 < KL/r : use above results $F_{e} = \left(\frac{\pi^{2} E C \omega}{(k_{z} L_{z})^{2}} + 6.5 \right) \frac{1}{I_{x} + I_{y}} = 204 \text{ ks}^{2}$ E=10,00000 $C_{W} = \frac{(1/0)^{3}}{36} \left[\left(2.25 - 1/0 \right)^{3} + \left(\frac{1}{6} \times \frac{1}{6} \right)^{3} \right] = 0.000521 \text{ in}^{6}$ Kz = 0.5 Lz= 2" G= 3800 KJ. J= Bab3 = Yz (2.25) (40)3= 0.001461,4 Ix= Y12 (Y8)3 (3)= 0.000366 in 4 Iy = 1/2 (3.0)3 (48) = 0.281.24 Check Local Buckling (E:3) Fe: Aeg= 14.34 < A, (B.S.4.6) X,= (Bp-Fcy)/Dp = (45-35)/0.246=40.7 Nz= K, Bp/ Dp = 0.35(45)/0.246=64.0 " Fe = Fay = 35ks: " Fe above yous Check Buckling btn Member Buckling and Local Buckling (E.4)

No interaction b/c Fe> Fc